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Abstract

We propose a new approach to introduce Wilson lines on orbifold directiy after
the orbifold twist. A Wilson |ine corresponds to a representative vector of
the conjugacy class of the space group defining the orbifold. Wilson lines
corresponding to different conjugacy ciasses are noncommuting in generaf.
This noncommutativity may reduce the rank of the gauge group. This method

makes possible to construct degenerate orbifolds en purely stringy basis with-

out use of the potential argument in the field theoretical approximation.
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The Wiison-line mechanism [1] in the framework of orbifeld compactifica-
tion is a powerful method in constructing four-dimensional chiral superstring
modeis [2-6]. All previous approaches have considered Wilson lines, i.e.,
constant background gauge fields in the underiying torus, before the orbifold
twist, for which the topology of the manifold requires the Wilson lines to be
commutative [2-4]. In other words, Wiison {ines are introduced as a homomor-
phism of the translation defining the torus into E?K E;, so that the back-
ground gauge field must lie in the Cartan subalgebra.

In this paper we propose another new approach to introduce Wilson lines
on orbifoid directly, after the orbifold twist. This is done through consi-
deration of a Wilson line corresponding to a representative vector of the con-
jugacy ciass of the space group S defining the orbifold. In this case Wilson
lines corresponding to different conjugacy classes are not necessary commuta-
tive and this noncommutativity may reduce the rank of the unbroken subgroup.
Another method to reduce the rank of the gauge group was proposed by [7] by
considering non-abeiian embedding of the space group in the bosonic formulation.
There the background gauge fields were in the Cartan subalgebra so that the
Wilson |ines were represented by shifts in the Esl E; lattice. On the other
hand, the embedding of the point group was made by Weyl rotations of the Eg* E;
lattice. In this paper we work in fermionic representation of the gauge
degrees of freedom since it makes possible to treat the abeiian and non-
abelian embedding in a unified way. Especially we can make purely stringy
construction of the degenerate orbifold [8] without recourse to the field
theoretical argument such as flat directions of the potential.

Let us consider closed string propagation on space-time with topology
mjo-i @, where a d-dimensional orbifold O is constructed by identifying
points of d-dimensional euclidean space Gﬁi under a space group S of rotation

and translation v: 0 = R‘/S [2]. A typical eiement of S takes 2% (92)“4- v



and will be denoted by (8,v), where we take the orbifold to be even-

dimensional and & = 1,...,d/2 in complex notation. Elements of S correspond
with the various twist fieids or the twisted Hilbert space; in each twisted
sector the string field obeys different boundary conditions. There is one
sector of the Hilbert space for each conjugacy class of the space group §,

since S is non-abelian [2]. In what follows we consider Z orbifold with d = 6.
Generaiization to other orbifold will be straightforward.

For a ZN orbifold 9 is a single rotation of order N in S0(d) and the space
group S for this orbifold consists of elements of the form (B“,v), where k = 0,
1,...,N-1, GK denotes the kth power of 8 and v runs over the d-dimensional
lattice [y . For k = 0, the translation elements of S beiong to conjugacy
classes of the form {(1, 87 v0)} with v? fixed and j = 0,1,...,N-1. These
classes describe winding sectors. For k = 1,...,N=1, there are several

conjugacy classes in S, {Gk;ka), where Vi § Funs over some coset of Tas

oFvoe + 1 -6% (1)
p=0,1,...,N-1

R

uér'd_

for some fixed sz , which can be regarded as a representative of a conju-
gacy class labeled by (k,f). The first index k = 1,...,N-1 denotes one of the
N-1 twisted sectors of the Hilbert space. The second index f = 1,...,n(k)
labels a conjugacy class within that sector [9]. To each conjugacy class
corresponds a representative vector v°,6 and we associate a Wilson {ine to this

k.f

vector.

Embedding of the space group (§,v) into the internal degrees of freedom
is done in both bosonic and fermionic formulation. Let us work in fermionic
representation of the gauge degrees of freedom of the heterotic string [10].

We introduce two sets of 18 fermionic coordinates'qﬁ and {F{(i =1,...,16)



which transform as the vectors of S0(16) % 50(16)'. The background gauge fields
A?, transform as (120,1)+(1,120). The Wilson line corresponding to a represen-

tative vector v,“’_.f of the conjugacy class (k,f) is given by

Oy = exp[27Ti 9£K] (2)
and
20, = Au(vg 4 ) ®

The coset obtained by setting VA?.{- =0 is a sublattice of I, which is denoted

by (1-0)Ty = {(1-8)u, ue [y }. For this sublattice the corresponding Wilson

line must be identity so that A!“" should obey
AF[(I-—ﬁ)u]P =2nN, u e [y (4)

where N is a matrix with integer eigenvalues.

Embedding of a rotation of order N in SO(d) into the internal degrees of
freedom is determined by giving the rotation matrix JL for the fermionic coordi-
nates "l]-': and ':F". By choosing appropriate basis of S0(16) X 80(16)', we can

always diagonalize the [l such that

SL = expl2mi3H,T ()
N sg =0 mod 1

which obeys J'LN =1 and H-& (£=1,...,18) is the Cartan subalgebra of S0(16) x
50(16)’. For d/2 complex 2™ planes let us denote the unit basis vector e‘:_,

e:_ of the [y lattice such that the angle between two vectors is 27YN. Under
the 2TYN rotation these basis vectors transform as e3> e". So the Wilson

1 Z
lines corresponding to these basis vectors transform as

26,8 = By, ©



where 6*11 is defined by (2) with 2TL94‘1 = AP(e:)"', etc., since

(8, 0Y(1, e ) (075, 0) = (0,0e,) (8", O)
(1,8 e,) (1

(1, e

2

For the singly-twisted and singly-antitwisted sectors, k =21, there is a
one-to-one correspondence between the conjugacy class (g%, ":,-f) and the fixed
point f of the rotation 8 or ¢~/ acting on the torus [9]. The conjugacy classes
far the higher-twist sectors (k #+1} are not usually in one-to-one correspon-
dence with the fixed points of 6", Some of the fixed points of 8" may not be
fixed by § so that physical states are & -invariant |inear combinations of
states located at different fixed points of 9% [9]. The index f labels such a
f-invariant combinations of fixed points. Since the @ -invariant (combination
of) fixed points obey f = ka and f =0f mod Ty lattice, they are simultaneous-
ly fixed for all twisted sectors k = 1,...,N-1. Thus the conjugacy classes for
the higher-twisted sectors are in one-to-one correspondence with the @ -invari-
ant fixed points.

Now that we have shown that the conjugacy class (k,f) is in one-to-one
correspondence with the § -invariant fixed point {abeled by f and also in one-
to-one correspondence with the Wilson |ine G{,K given by (2). Then we can show

that the Wilson lines @, ; and ®;, corresponding to the same conjugacy class f

obey the following commutation refation:
[ @, W@, 1 =0 (8)

Proof: m®+,K corresponds to (GK, 0)(1, V-:f) = (6%, Onv:f)' Then the commu-
tator in (8) is given by

(0", O v (8% 0"y - (ke h)



+ - b
= (%" 0" v:._‘_q-o"v;:’,)-(th) . ()
Here we can show that
+h [
e"*kv:‘.f + 0" Vg = 0" U,:,.} + 6 U:,.f. , (10}

since the & -invariant fixed point f is a common fixed point of both k- and h-

twisted sector so that

f=Q-oy' e v, = a-0h oy ()

moduto (1-8)[y lattice.

The operator LJ+’K= JLK@‘LK to the internai degrees of freedom can be
thought of an automorphism of space rotation ek: exp[27M ik/N] for z%, since
[J}_,"@;'K]M.—-l. The commutation relation (8) simply means that ZN is abelian.
Note, however, that for different conjugacy ciasses or fixed points f $ g, we

have in general

[&F@;,n, Jﬁt@«;,p‘ l 0 (12)

and this noncommutativity may reduce the rank of the subgroup. Different auto-
morphisms o and W 1 corresponding to different conjugacy classes or differ-
ent © -invariant fixed points may not commute each other. The gauge quantum
numbers of various states are determined by the zero modes of generators which
commute with the hamiltonian and ;.. So the gauge symmetry is broken to the
subgroup which commutes with ¢J, . and noncommutative )’s may reduce the rank
of the subgroup.

In bosonic representation of the gauge degrees of freedom, an element of S,
2% > (GKZ)D‘ + v,:.f. is embedded as XI—) (J].]::)()I + V::f , I=1,...,16. Here JL
is an automorphism of the group lattice, i.e., Weyl rotation and V:.j. is a
Wiison line corresponding to the translation v,y in the conjugacy class (6",

Vk'}‘)' In this representation the Wilson lines VX  are commutative since they

. ¥



are homomorphism of transiations v, 4 and they must be chosen to be in the
Cartan subalgebra. Note, however, that the basis of the group representation
for V::.]. may be chosen to be different for different conjugacy classes f. If

we choose common basis for all conjugacy classes, this reduces to the case con-
sidered in [7]. Noncommutativity between an automorphism JL and translation V:d
of the group lattice may reduce the rank of subgroup.

Although we can make parallel argument for bosonic and fermionic formula-
tions, we work in this paper in the fermionic formuiation, since it is easier
to argue symmetry breaking in a unified way for both abelian and non-abeiian
embeddings. This aiso makes possible to construct degenerate orbifolds in a
purely stringy way.

| In what follows we focus on the Z orbifold for which N = 3. In this case
there are only singly-twisted and singly-antitwisted sector and there is a one-
to-one correspondence between the conjugacy cl!ass and the fixed point of the
rotation § or @ . The fixed point on the Z orbifoid can be denoted by
(p,q,r)d with d = Jl_lé exp(iT/6) and p,q,r = 0,21 mod 3. Here p,q,r specify
the location of the fixed point in the three complex 2 planes. If we choose
the unit basis vector of the Iy lattice in the ré plane as ;: = e: and E::

o P

. -t ol o
e, + e: , these basis vectors transform as e e e

:—7 e, - &, and ez_—)-;:. Then the

representative vector of the conjugacy class (GK, f) corresponding to the fix-
ed point f = (p,q,r)} can be chosen as p';: + q3:+ rsz, which is a shift on the 'y
lattice for the fixed point to be accompanied under a group action [4]. The

Wilson line corresponding to this representative vector amounts to
8,, = mplami(Patber PG T | (13)
where the background-field contribution is written by

2 Ay = (A',’,.T;JAX;{ ‘I~‘.-)->3.ip (1)



and b,, c, are given by replacing 2 by &, and ., respectively. The
generators of S0{16) x Sl')(lﬁ]r are denoted by T;; and ?;J- . We can introduce

at most three independent Wilson iines a,, bk and cy.

Automorphism w, ,of the Z,, group action on z% is represented by the gauge

fermions ¥ as the fol lowing boundary conditions,

Yo+, o)

I

-0 @, W, T (15)

Y (o, ey = ~ (<17 @y, W (0,7 C16)

and matrix notation is understood here. n,m = 0,1 specifies the spin structure.
When the background gauge fields are taken in the Cartan subalgebra, ail the

Witson-line matrices @+ x and the rotation matrix J), are commutable and are dia-
gonalized simultaneousiy:
. »
'51“‘9*,“ = (“)-F.K = Pup t’_z"rn.k..'t);t Hf] (17)

and

¢ ¢
'1)‘+ = §f+cpa,+ b, + FC, D (18

where we have used the following reiation,

a,=2a,, b,=2b,, ¢,=2¢,, (197

3(ak, b,, cx) = integers mod 3 (20)

which are derived by (4) or (6). This is the case of the abelian embedding and
we can follow the previous works with the shift vector vf [3,4].
The condition of modular invariance in the presence of Wiison lines is

given by the level matching condition at one-loop order [11], which reads
¢
N}‘.;-V; =0 mod 2, (21)

N{Z D -Z Yy =0 mod 2, (22)

)



where £ = é%},l,-Z,O) is the vector which defines the embedding of the Z,
group action in the spacetime right-moving Neveu-Schwarz-Ramond (NSR) fermions.
The string states on the orbifold are invariant under the Z, group. The group
invariant condition is obtained by constructing the projection operator onto

the invariant subspace of the string Hilbert space, and is given by
Ve kv ¢ % - kEY/DEY + =0 mod 1 (23)

where V£ is the vector in the E,x E, root lattice and K® is the vector in the

S0(8) vector or spinor lattice [4]. The m, is the eigenvalue of ﬁn, where the

ot

twist operator a“ for z o A-1 2mi/3

is given by 3“ = exp(2¢tian): a“ z g, =e .
The gauge bosons are obtained in the untwisted sector by the combination
with the right-moving ground states with helicityx1 in 8, of S0(8), for which

Ka;mz 0. Then the group invariant condition (23) implies

V£ vf =0 mod 1 | (24)

and the symmetry corresponding to the root vi obeying (24) for all v: remains
unbroken. Massless fermions in the untwisted sector are combined with the
right-moving ground states with helicity 1/2 in 85 of S0(8), for which KQFQ'=

2/3 mod 1. The group invariant condition (23) reads

V! vf =1/3 mod 1, (25)

and the states obeying this condition for all vf survive as massless fermions,

Chiral fermions in the twisted sector must obey the following massless condi-

tion:

Y < 2
z +v:) +N -3

L o, (26)

%(K”“-g“)" . Np - o, (27)

s
it

where NL and NR are the occupation numbers for the ieft- and right-moving

_8_.



oscillators of z*. The group invariant condition (23) is always satisfied by
the states obeying (26) and (27). Construction of models based on abelian
embedding has been done extensively [3-6].

Now let us consider more general case where the background gauge fields
have components other than the Cartan subalgebra. In this case some or all of
the automorphisms u&’s corresponding to different conjugacy classes do not
commute each other and are not diagonalized simultaneously. The gauge symmetry
will be broken to the lower-rank subgroup which commutes with allcq;s. In
order to quantize string states we need to diagonalize the boundary conditions

(15) and (18). Diagonaiization is done at each conjugacy class as follows:

(,J‘F,kz ‘D*K®+,k'_‘ U; -empLzr'nikU'_: H_E'j U-f- (2%3)

where Uz belongs to S0(16) x SO(16) and eigenvaiues uf must obey N vf

due to Z,; invarience. The string states associated with each conjugacy class

=0 mod 1

are expressed in the different basis which diagonalizes the corresponding boun-
dary conditions. The Z, invarience of the string Hiibert space imposes now the
condition (23) for the eigenvaiues E: and the additionat condition that the

string Hilbert space should be invariant under Ug :
-1
U, Ey Uy = Ey, (21

-1

Hye s (30)

where Ev.is the generator corresponding to the root V of E,X E; and H£ is the
Cartan subalgebra.

Gauge symmetry is determined now by (24) and (30), since the condition (29)
is always satisfied for E, obeying (24) because the transformation generated by
E, leaves v invariant and commutes with Uy . This impliies that the Uy invari-
ance does not change the non-abelian part of the subgroup determined by (24).

The U(1) corresponding to Hi which does not obey (30) disappears now and the

-9 -



rank of the subgroup is reduced.

Massiess spectra of chiral fermions in the untwisted sector are determined
by (25) and (29), (30). Non-singiet muitiplets with respect to the unbroken
non-abelian subgroup survive under the U invariance since the generators of
the non-abelian subgroup obey (29). On the other hand, singiets of the non-
abelian subgroup may have the U(1) charge which is not invariant under (30) and
are discarded. In the twisted sector, massiess spectra are determined by the
massless condition {26). The number of states in the twisted sector is the
same as the case of the abelian embedding.

Here a number of comments are in order.

(1) The discarded zero modes are only singlets of the unbroken non-abelian sub-
group, so that this truncation does not change anomaly cancellation with res-
pect to the non-abelian subgroup. When the subgroup contains U(1), some of
them might be anomalous, i.e., the trace of the corresponding U(l) generators
is non-vanishing [12]. This anomaly is cancelled by the Green-Schwarz mecha-
nism [13].

(2) Since the zero modes which are not invariant under Ug have been discarded,
we must check moduiar invariance of the truncated theory. At one-loop order we
can varify modular invariance explicitly by calculating the partition function.
It turns out that the transformation U to diagonalize the boundary conditions
disappears inside the trace of the partition function and we obtain the same
partition function as the abelian embedding. Thus the level-matching conditions
for the eigenvalue vﬁ given by (21) and (22) are sufficient to keeplmodular
invariance at |least at one~loop order. The fact that the partition function

does not depend on U implies that the (inner) automorphism corresponding to Ug
is commutative with the modular transformation. Modular invariance is not

affected by the rotation of the basis.

Now we come to an important observation that apart from the U+rnon—singlats

~10~



the symmetries and particle spectra are compietely determined by the eigenvalue
v; : Different Wilson lines with the same v: which are connected by Uf give the
same symmetry and mass spectra. Since the transformation U, depends on the con-
tinuous parameters, infinitely many Wiison iines are associated with the same
eigenvalue g:. This means that the string vacuum is highly degenerate and it
corresponds to flat direction of the potentiai in the field theoretical approxi-
mation. This situation has been found by [8] in another approach of non-
abeiian embedding with the use of the Weyl| rotations of the E x E; fattice.
In our approach, however, we can construct degenerate orbifolds on purely
stringy basis without recourse to the potential by considering possible trans-
formation Ug of the eigen states determined by v;.

Stringy construction of degenerate orbifold is summarized as follows:
First we choose the rotation matrix JL given by (5) to embed the Z,, group act-
jon. At this stage the symmetry G, is determined such that it is invariant
under JL. Then we introduce Wilson l{ines by giving eigenvalues v% which obey
the condition of modular invariance (21), (22). The symmetry is broken as
G,~ Gix.U(l)’s with no rank-reduction. If we rotate the basis by U.C Gq,
which commutes with G,, some or all of U(1)’s are killed by (30) . However,
for some particular choice of Ug, (30) happens to lead to no or partial rank-
reduction. This corresponds to the multicritical point for which there is an
enhanced symmetry. Introduction of Wilson |ines corresponds to giving vacuum
expectation values (vev’s) to scalar fields in such a way that the D- and F-
terms vanish. The transformation U+ corresponds to flat directions of the
potential. MNote that untwisted and twisted flat directions [8] are treated on
the same ground by choosing appropreate Wilson lines.

Let us consider simpie exampies, some of which were given in [8] by | cok-

ing for flat directions. We can aiso construct new degenerate orbifolds which

were not discovered in the fieid theoretical argument. We choose Z, embedding

-11-



by giving the rotation matrix JL with 35 = e +e2_+es_-2eé+e7+23: in the orthogonal
basis. The resuiting gauge group is determined by (24) with vg = ¢ and it turns
out to be SU(9) % SO(14) x U(1) . The matter content is 3x {(84,1) + (1,14) _+
(1,64)1} in the untwisted sector and 27x (§,1)413 in the twisted sector.

Now we introduce Wilson lines. It is possible to choose various Wilson
lines and they lead to various degenerate orbifoids.
(i) We introduce one Wilson line, whose eigenvaiue is given by 3v, = 3%+ (201+
o, +e,) for f = (£1,q,r), q,r = 0,%1 and v, =g for f = (0,q,r). Then SU(9)
breaks down to SU(3) X SU(3) x SU(3) X [U(l)]z‘, where two U(1)’s correspond to
(H, +H,) and (2H,+H,+H,). The matter multipiet in the untwisted sector turns out
to be 3% {(3,3,3) + 3(1,1,1)} where quantum numbers of three singlets are H:,
(HI+H1) and (2H +H, +H;). Now we rotate the Wilson |ine by U§, the subgroup of
SU(9), which leaves { invariant and commutes with [SU(S)]3. Then two U(1)’s
and 3% 2 singlets are projected out by (30). The matter content in the twisted
sector does not change under Uf and is given by 27x {(1,3,1) + (1,1,3) +
(3,1,1)}. This exampie corresponds to the model given in [8] with non-vanish-
ing vev’s to some components of the 84-dimensionai representations in the un-
twisted sector and we can reproduce their result by purely stringy method.
(ii) As the second exampie we introduce two Wilson lines whose eigenvalues are

given by
3v, = 30 « p(2e ~e +e;) + qle -e +2e,) , (31)

for the conjugacy class f = (p,q,r), p,q,r = 0,1 mod 3, Here the symmetry is
g ’

broken to [U(1)] ¥ S0(12) x [U(1) ]*. If we rotate Wilson lines by U 5= SUG)

all U(1)'’s from SU(9) are kiiled by (30) and the remaining gauge group is

Sl:l(12)l X [U(l)' ]2'. In the untwisted sector the matter content turns out to

-12-



(84,1) -—>  9(1,1)
(1,14 —— (1,12) + 2(1,1)
(1,68) ——>  2(1,32)

and in the twisted sector 27X 9 singlets. This example corresponds to the model
in [8] with vev’s to the nine §’s in the twisted sector and the 14 in the un-
twisted sector.

In the field theoretical argument it is generally complicated task to look
for flat directions of the potential with vanishing D- and F-terms. In stringy
construction of degenerate orbifold, the flat direction with vanishing D- and
F-terms is automatically chosen by introducing Wilson lines which satisfy the
condition of modular invariance. It is easy to construct other modeis with the
choice of Wilson lines. If we take one Wilson line, 3v+ =33« p(el-es+ 2q;),
We have the gauge symmetry breaking as SU(9) —> SU(7) x [U(1)]*. Rotating the
basis by the SU(3) subgroup of SU(9) which leaves SU(7) invariant, two U(1)’s
are projected out and the resulting gauge symmetry is SU(7) x 50(12f X [U(l)']z.

To conclude we have proposed a new approach to introduce Wilson lines on
orbifold directly after the orbifoid twist. A Wilson line corresponds to a
representative vector of the conjugacy class so that it is not commutative in
general. This noncommutativity may reduce the rank of the gauge group. Our
method easily gives purely stringy construction of degenerate orbifold with-
out use of the potential argument. This makes possible to construct wide
variety of models inciuding SU(3) x SU(2) X U(1), which will be give in detail
elsewhere.
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